A new study published in the Chemosensors journal introduces a novel approach to nitrate ion detection using all-solid-state ion-selective electrodes enabled by graphene oxide as an ion-to-electron transducer. Nitrate ions play a critical role in the nitrogen cycle in natural ecosystems, such as in soils and aquatic environments. However, their levels have dramatically increased due to modern agricultural practices. The excessive use of inorganic fertilizers has led to high concentrations of nitrate in surface and groundwater, posing significant environmental and health risks. Eutrophication, which is a phenomenon caused by nutrient overload in water bodies, results in uncontrolled algae growth, oxygen depletion, and poor water quality. This negatively impacts biodiversity, fisheries, and recreational activities. Moreover, if nitrate concentration exceeds a certain level (the value established by the European Union is 50mg/L), water may become unsuitable for consumption, potentially leading to severe health issues such as colorectal cancer and thyroid disease. INL researchers have developed an innovative sensor that can robustly detect low concentrations of nitrate in water. Despite being effective, traditional methods for nitrate detection are time-consuming and expensive. Electrochemical sensors offer a promising alternative due to their simplicity, cost-effectiveness, and rapid response time – particularly potentiometric ion-selective electrodes. However, early […]
Read more