News

Breakthrough technology for cancer diagnostics

Breakthrough technology for cancer diagnostics

INL researchers are part of the consortium behind BIOCELLPHE, a pioneering project focused on advancing cancer diagnostics and personalised medicine. This innovative European-funded project is at the forefront of scientific and technological innovation, introducing a groundbreaking technology for identifying proteins as diagnostic biomarkers at the single-cell level. This new approach offers multiplexing capabilities, portability and enhanced sensitivity. Alexandra Teixeira, research fellow at the Medical Devices group, highlights that “BIOCELLPHE is pioneering the use of engineered bacteria to recognise and bind with high specificity to protein targets on the surface of circulating tumour cells, or CTCs, which are key players in cancer metastasis.” This specific binding of engineered bacteria to CTCs subsequently triggers the production of molecules (Raman reporters), which can be detectable with high sensitivity using surface-enhanced Raman scattering (SERS). More specifically, SERS uses plasmonic nanoparticles to enhance Raman signals, allowing ultrasensitive analysis and detection at the single molecule level. The pathological role of CTCs in cancer metastasis is not completely understood due to the lack of effective analytical tools and remains an area that needs further exploration. BIOCELLPHE addresses this gap by developing new tools for the phenotypic identification of CTCs at the single-cell level, with high-throughput and multiplexing […]

Read more
A miniaturised model of human digestion to advance therapies and nutritional products

A miniaturised model of human digestion to advance therapies and nutritional products

INL researchers have made a significant breakthrough in the development of reliable in-vitro digestion models. This ‘digestion-chip’ promises to revolutionise the way new oral formulations are tested, offering a more accurate, efficient, and cost-effective alternative to current models. Traditional in-vitro digestion models often fail to replicate the complex dynamics of the human gastrointestinal tract. They either lack critical digestive processes or require large volumes of samples and reagents, which can be challenging when dealing with nanomaterials. The INL’s innovative ‘digestion-chip’ addresses these limitations with its miniaturised design and advanced features. The coordinator of the study Catarina Gonçalves explains, “the Food Processing and Nutrition research group proposes a miniaturised digestion system based on incubation chambers integrated into a polymethylmethacrylate device. This solution incorporates key dynamic features of human digestion while maintaining low complexity and using small volumes of samples and reagents”. The digestion-chip features gradual acidification (the stepwise addition of enzymes and simulated fluids during the gastric phase) and controlled gastric emptying. These capabilities are essential for replicating the intricate environment of the human stomach and intestines. The research team’s experimental results indicate that “the ‘digestion-chip’ successfully replicates the established static digestion INFOGEST protocol”. Moreover, “the semi-dynamic digestion kinetics observed with […]

Read more
Innovative graphene oxide sensor detects low concentrations of nitrate in water

Innovative graphene oxide sensor detects low concentrations of nitrate in water

A new study published in the Chemosensors journal introduces a novel approach to nitrate ion detection using all-solid-state ion-selective electrodes enabled by graphene oxide as an ion-to-electron transducer. Nitrate ions play a critical role in the nitrogen cycle in natural ecosystems, such as in soils and aquatic environments. However, their levels have dramatically increased due to modern agricultural practices. The excessive use of inorganic fertilizers has led to high concentrations of nitrate in surface and groundwater, posing significant environmental and health risks. Eutrophication, which is a phenomenon caused by nutrient overload in water bodies, results in uncontrolled algae growth, oxygen depletion, and poor water quality. This negatively impacts biodiversity, fisheries, and recreational activities. Moreover, if nitrate concentration exceeds a certain level (the value established by the European Union is 50mg/L), water may become unsuitable for consumption, potentially leading to severe health issues such as colorectal cancer and thyroid disease. INL researchers have developed an innovative sensor that can robustly detect low concentrations of nitrate in water. Despite being effective, traditional methods for nitrate detection are time-consuming and expensive. Electrochemical sensors offer a promising alternative due to their simplicity, cost-effectiveness, and rapid response time – particularly potentiometric ion-selective electrodes. However, early […]

Read more
INL advances nanotechnology for Smart City future

INL advances nanotechnology for Smart City future

This year at the Open Day, more than 1000 visitors had the chance to discover the new demonstrator ‘Smart City’, showcasing a fusion of advanced nanotechnologies developed at INL. ‘Smart City’ not only highlights INL’s research and development in nanotechnology but also exemplifies the potential of these technologies to foster smart, sustainable urban environments. At the heart of this demonstrator are MEMS, or Micro-Electromechanical Systems. These small, integrated devices combine electrical and mechanical components to perform functions such as sensing, controlling, and actuating on a micro-scale. They can produce or sense micro-motion or micro-forces, making them indispensable in sectors ranging from automotive and medical to telecommunications and electronics. The transformative potential of MEMS lies in their ability to significantly alter how humans interact with technology and their surroundings. At the core of this ‘Smart City’ is the Sensible Car project, which highlights the development of intelligent sensors essential for autonomous driving. These sensors enable comprehensive perception of surroundings, real-time precise location updates, and flawless action execution. INL’s contribution to this project includes the creation of two-dimensional MEMS mirrors, diffractive optical elements, tuneable filters, and lenses, all integrated into a LiDAR system. LiDAR, or Light Detection and Ranging, measures distances by […]

Read more
New sustainable graphene production developed at INL

New sustainable graphene production developed at INL

The rising demand for portable electronics, e-textiles, and IoT devices has driven the need for lightweight technologies and miniaturized energy storage solutions. Graphene-based nanomaterials are at the forefront of extensive research due to their chemical stability, high surface area, strength, flexibility, and superior thermal and electrical conductivity. Supercapacitors, known for their fast charge-discharge rates, long lifespan, and simple structure, are becoming essential for energy storage in electronics, electric vehicles, and biomedical devices. They operate by storing charges through the adsorption and desorption of ions at electrode interfaces, achieving power densities over 10,000 W/kg. Microsupercapacitors, which are smaller and lighter versions, are particularly suitable for portable and wearable electronics, offering even higher power densities. The high electrical conductivity and surface area of specific graphene materials make them ideal for these applications. However, current production methods present toxicity and scalability issues that have limited their widespread use. Additionally, the materials need to comply with the requirements of deposition techniques able to guarantee reasonable production throughput. Now, INL researchers have developed a sustainable approach to produce an electrically conductive, graphene-based paste suitable for fabricating flexible devices. The results are reported today in the journal Nano Energy, in a paper by INL researchers, in collaboration with the […]

Read more
INL researchers are integrating light and AI to advance nanotechnology

INL researchers are integrating light and AI to advance nanotechnology

‘What if the brains of future robots are powered by light?’ This was one of the questions INL researcher Bejoys Jacob has been trying to answer during the past years at INL. As artificial intelligence, also known as AI, continues to revolutionise society, scientists are exploring innovative ways to power the brains of future robots. Traditional computer architectures, such as the von Neumann architecture, demand substantial energy consumption to execute AI algorithms. In light of the increasing demand for AI tools and the global push for sustainable energy solutions, researchers are seeking alternative computational architectures inspired by the human brain. At INL, the focus has been on developing a revolutionary architecture powered by light. This ambitious project involves the creation of miniaturised light sources, detectors, and photonic interconnects for a novel photonic integrated circuit architecture. As part of this initiative, Bejoys, who is pursuing a PhD at INL, in the Ultrafast Bio- and Nanophotonics group, in collaboration with Charles III University of Madrid (UC3M), is developing nano- and micro-LEDs based on GaAs III-V semiconductor materials. These LEDs mimic neuronal activity through optical/electrical signals, paving the way for advanced brain-inspired computational architectures. Bejoys explains that “the devices developed through this research […]

Read more
INL researchers awarded funding to develop an automated sensor to detect emerging viruses

INL researchers awarded funding to develop an automated sensor to detect emerging viruses

Zoonotic infectious diseases, i.e. diseases that transmit from animals to humans, are on the rise, and the potential for a new pandemic is more significant than ever. It is imperative to develop advanced technologies capable of continuous monitoring to identify high-risk zones for pathogen transmission between animals and humans. This requirement is essential to mitigate the potential human, socio-political, and economic impact of pandemics. The global initiative ‘One Health’ advocates collaboration among human, animal, and environmental health professionals to address health challenges. Its goal is to comprehend and prevent zoonotic diseases, while fostering a holistic approach to global health. Although the European Parliament calls for continuous surveillance and harmonised data collection from animal farms, current practices fall short for continuous and automatic detection, limiting detection to specific and already known pathogens. FLUFET, which stands for ‘FLow detection of virUses by graphene Field Effect Transistor microarrays’, is the new EIC Pathfinder project with a goal to develop a novel approach for the detection of viruses. It will be the first automated sensor capable of continuously detecting a broad spectrum of viral targets, including unknown viruses. This revolutionary sensor, combining technologies and knowledge from different fields, such as graphene field effect transistors […]

Read more
INL researchers innovating in next-generation solar power

INL researchers innovating in next-generation solar power

Solar cells, also known as photovoltaic cells, directly convert sunlight into electricity. The most prevalent type, crystalline silicon photovoltaic cells, found in commercially available solar panels, benefit from extensive expertise and synergies with the microelectronics industry. Despite their cost competitiveness, silicon photovoltaic cells have limitations, such as poor sensitivity to low light, rigid modules, conservative aesthetics, and limited flexibility in dimensions. If photovoltaics are to be deployed in a larger number of applications, these limitations need to be addressed. The Nanofabrication, Optoelectronics, and Energy Applications (NOA) research group is exploring novel thin-film solar cell concepts – or next-generation photovoltaics – to enhance performance while meeting environmental standards. They are particularly focused on developing solutions that merge conversion efficiency, durability, and aesthetics for building-integrated photovoltaics (BIPV), targeting stakeholders in the construction industry. BIPV offers a practical means of integrating photovoltaic systems into buildings, potentially facilitating the installation of hundreds of gigawatts worldwide without the need for additional land. This approach aligns well with the current trend of urbanisation. Pedro Salomé, NOA’s group leader, elaborates “We are engaged in various projects, funded by Portuguese and European programmes, to devise solutions that overcome the challenges posed by conventional silicon modules. Most of our […]

Read more
A microfluidic platform that simulates human digestion

A microfluidic platform that simulates human digestion

In a recently published study, INL researchers developed an innovative microfluidic platform that is capable of replicating key human gastrointestinal processes, offering a game-changing tool for the assessment of newly-developed drugs and/or food supplements. The innovation combines a ‘Digestion-Chip’ and a ‘Gut-Chip’, each enabling sequentially the simulation of digestion through the gastrointestinal tract and the evaluation of intestinal permeability. The study ‘From mouth to gut: microfluidic in vitro simulation of human gastro-intestinal digestion and intestinal permeability’, introduces a miniaturised setup that allows studies of sample bioaccessibility and simplified bioavailability using minimal sample amounts. In addition, the outflow from the ‘Digestion-chip’ can be exposed to the cell-based Gut-Chip, which replicates the intestinal epithelium, using unprecedentedly low sample dilutions thus allowing the detection of ‘rare’ compounds. Both devices work in continuous flow requiring very little user interfacing. In this work, casein – a milk protein that is widely used as a supplement in sports nutrition – was tested as a model compound. And critically, the Gut-Chip can be used to evaluate intestinal permeability offering reference permeability values that are in line to those found using human ex vivo models. Miguel Xavier, one of the first authors of the research study adds “the […]

Read more
1 2 3 4 5 6 13