Ensieh Iranmehr
Staff Researcher
Ensieh Iranmehr is a research engineer at INL. She joined INL Technology Engineering Group in November 2020. She focuses on using machine learning techniques to process sensor signals and images. She works on several projects focusing on analyzing sensor signals, including a TMR-based spintronic sensor, microphone, and Raman spectrum. She also works on some edge computing projects. During her work at INL, she has developed unsupervised algorithms for extracting signal patterns, including patterns based on shape and frequency, as well as supervised algorithms for Raman spectra analysis.
Ensieh has a Ph.D. in Digital Systems from the electrical engineering department of the Sharif University of Technology, Tehran, Iran. Her works revolve around artificial neural networks, machine learning, neuromorphic engineering, and digital systems. For her PhD project, she has proposed a new neuromorphic structure of a spiking neural network inspired by biological studies called the ILS-based Reservoir Network. She also has an MSc in Digital Electronic Engineering from the electrical engineering department of the Amirkabir University of Technology, Tehran, Iran. Her MSc project revolved around artificial neural networks, image processing, and parallel processing.
Selected Publications
-
Unsupervised Extraction of Shape-based Signal Patterns for Incoming Signal Recognition
IEEE SENSORS JOURNAL, 2023 -
Developing a structural-based local learning rule for classification tasks using ionic liquid space-based reservoir
NEURAL COMPUTING & APPLICATIONS, 2022 -
ILS-based Reservoir Computing for Handwritten Digits Recognition
8th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), 2020 -
Sound Source Localization in Wide-Range Outdoor Environment Using Distributed Sensor Network
IEEE Sensors Journal 20 (4), 2020 -
Bio-Inspired Evolutionary Model of Spiking Neural Networks in Ionic Liquid Space
Frontiers in Neuroscience, 2019